Hyperoxia-induced methylation decreases RUNX3 in a newborn rat model of bronchopulmonary dysplasia
نویسندگان
چکیده
BACKGROUND Bronchopulmonary dysplasia (BPD) in premature infants is a predominantly secondary occurrence to intrauterine inflammation/infection and postpartum mechanical ventilation; in recent years, an association with epigenetics has also been found. DNA methylation, catalyzed by DNA methyl transferases (DNMTs), and tri-methylation of lysine 27 on histone H3 (H3K27me3), mediated by the methyltransferase, Enhancer of Zeste Homolog 2 (EZH2), are some of the most commonly found modifications in epigenetics. Runt-related transcription factor 3 (RUNX3) is associated with pulmonary epithelial and vascular development and regulates expression at the post-transcriptional level by DNA methylation through DNMT1 or DNMT3b. However, the involvements of these epigenetic factors in the occurrence of BPD are, as yet, unclear. METHODS Newborn rats were randomly assigned to a model, hyperoxia (85 % O2) or control, normoxia group (21 % O2). Lung tissues and alveolar type 2 (AT2) epithelial cells were collected between 1-14 days. The expression of DNMTs, and EZH2 was detected by immunohistochemistry, Western blot and real-time PCR. The percentage of DNA methylation and H3K27me3 levels in the RUNX3 promoter region was measured by bisulfite sequencing PCR and chromatin immunoprecipitation assay. RUNX3 protein and mRNA expression in AT2 cells was also measured after inhibition using the DNA methylation inhibitor, 5-Aza-2'-deoxycytidine, the H3K27me3 inhibitor, JMJD3, and the EZH2 inhibitor, DZNep. RESULTS Compared with the control group, RUNX3 protein was downregulated and DNMT3b and EZH2 were highly expressed in lung tissues and AT2 cells of the model group (P < 0.05), while high DNA methylation and H3K27me3 modifications were present in the RUNX3 promoter region, in lung tissues of the model group (P < 0.05). Following hyperoxia in the model group, JMJD3 and DZNep significantly reversed the hyperoxia-induced down-regulation of RUNX3 expression in AT2 cells (P < 0.05), more so than 5-Aza-2'-deoxycytidine (P < 0.05). CONCLUSIONS 1) DNA methylation and H3K27 trimethylation are present in the BPD model; 2) RUNX3 down-regulation is attributed to both DNMT3b-catalyzed DNA methylation and EZH2-catalyzed histone methylation.
منابع مشابه
Runx3 is a key modulator during the epithelial-mesenchymal transition of alveolar type II cells in animal models of BPD
Bronchopulmonary dysplasia (BPD) is a major challenge for premature infants; however, the underlying mechanisms remain unclear. We previously reported that epithelial-mesenchymal transition (EMT) in alveolar type II (AT2) epithelial cells influences the normal alveolar development process. In this study, we wished to examine whether Runx3 is an important factor for BPD by regulating EMT in AT2 ...
متن کاملPulmonary effects of keratinocyte growth factor in newborn rats exposed to hyperoxia.
Acute lung injury and compromised alveolar development characterize bronchopulmonary dysplasia (BPD) of the premature neonate. High levels of keratinocyte growth factor (KGF), a cell-cell mediator with pleiotrophic lung effects, are associated with low BPD risk. KGF decreases mortality in hyperoxia-exposed newborn rodents, a classic model of injury-induced impaired alveolarization, although the...
متن کاملNonpeptide CXCR2 antagonist prevents neutrophil accumulation in hyperoxia-exposed newborn rats.
Neutrophil influx in lung injury is controlled in part by chemokines acting through the receptor, CXCR2. To avoid adverse effects of steroids typically used to modify inflammation, we evaluated the effects of competitive blockade of CXCR2 in rats on neutrophil function in vitro and on neutrophil influx in vivo in hyperoxia-induced newborn lung injury, a model of bronchopulmonary dysplasia. In v...
متن کاملDeep Illumina sequencing reveals differential expression of long non-coding RNAs in hyperoxia induced bronchopulmonary dysplasia in a rat model.
BACKGROUND Bronchopulmonary dysplasia (BPD) in premature infants is a predominantly secondary occurrence to intrauterine inflammation/infection and postpartum mechanical ventilation; The purpose of this study is to explore the biological roles of lincRNA in the pathogenesis of BPD. METHODS Newborn rats were randomly assigned to hyperoxia (85% O2) or the control group: the normoxia group (21% ...
متن کاملVascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization.
BACKGROUND Bronchopulmonary dysplasia (BPD) and pulmonary emphysema, both significant global health problems, are characterized by a loss of alveoli. Vascular endothelial growth factor (VEGF) is a trophic factor required for endothelial cell survival and is abundantly expressed in the lung. METHODS AND RESULTS We report that VEGF blockade decreases lung VEGF and VEGF receptor 2 (VEGFR-2) expr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015